By Topic

Visible InGaN/GaN Quantum-Dot Materials and Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Grandjean, Nicolas ; Ecole Polytech Federale de Lausanne, Lausanne ; Ilegems, M.

General properties of III-V nitride-based quantum dots (QDs) are presented, with a special emphasis on InGaN/GaN QDs for visible optoelectronic devices. Stranski-Krastanov GaN/AlN dots are first discussed as a prototypical system. It is shown that the optical transition energies are governed by a giant quantum-confined Stark effect, which is the consequence of the presence of a large built-in internal electric field of several MV/cm. Then we move to InGaN/GaN QDs, reviewing the different fabrication approaches and their main optical properties. In particular, we focus on InGaN dots that are formed spontaneously by In composition fluctuations in InGaN quantum wells. Finally, some advantages and limitations of nitride laser diodes with active regions based on InGaN QDs are discussed, pointing out the requirements on dot uniformity and density in order to be able to exploit the expected quantum confinement effects in future devices.

Published in:

Proceedings of the IEEE  (Volume:95 ,  Issue: 9 )