By Topic

Quantum-Dot Optoelectronic Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhattacharya, Pallab ; Univ. of Michigan, Ann Arbor ; Mi, Z.

Self-organized In(Ga)As/Ga(Al)As quantum dots have emerged as useful nanostructures that can be epitaxially grown and incorporated in the active region of devices. The near pyramidal dots exhibit properties arising from the three-dimensional quantum confinement and from the coherent built-in strain. The properties and current state-of-the-art characteristics of quantum-dot junction lasers, intersublevel infrared detectors, optical amplifiers, and microcavity devices are briefly reviewed. It is evident that self-organized quantum-dot optoelectronic devices demonstrate properties that are sometimes unique and often surpass the characteristics of existing devices.

Published in:

Proceedings of the IEEE  (Volume:95 ,  Issue: 9 )