By Topic

Lattice-Based Volumetric Global Illumination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Feng Qiu ; Stony Brook Univ., Stony Brook ; Fang Xu ; Zhe Fan ; Neophytos, N.
more authors

We describe a novel volumetric global illumination framework based on the face-centered cubic (FCC) lattice. An FCC lattice has important advantages over a Cartesian lattice. It has higher packing density in the frequency domain, which translates to better sampling efficiency. Furthermore, it has the maximal possible kissing number (equivalent to the number of nearest neighbors of each site), which provides optimal 3D angular discretization among all lattices. We employ a new two-pass (illumination and rendering) global illumination scheme on an FCC lattice. This scheme exploits the angular discretization to greatly simplify the computation in multiple scattering and to minimize illumination information storage. The GPU has been utilized to further accelerate the rendering stage. We demonstrate our new framework with participating media and volume rendering with multiple scattering, where both are significantly faster than traditional techniques with comparable quality.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:13 ,  Issue: 6 )