By Topic

Multifield

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Janicke, H. ; Univ. of Leipzig, Leipzig ; Wiebel, A. ; Scheuermann, G. ; Kollmann, W.

Modern unsteady (multi-)field visualizations require an effective reduction of the data to be displayed. From a huge amount of information the most informative parts have to be extracted. Instead of the fuzzy application dependent notion of feature, a new approach based on information theoretic concepts is introduced in this paper to detect important regions. This is accomplished by extending the concept of local statistical complexity from finite state cellular automata to discretized (multi-)fields. Thus, informative parts of the data can be highlighted in an application-independent, purely mathematical sense. The new measure can be applied to unsteady multifields on regular grids in any application domain. The ability to detect and visualize important parts is demonstrated using diffusion, flow, and weather simulations.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:13 ,  Issue: 6 )