Cart (Loading....) | Create Account
Close category search window
 

Weaving Versus Blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color.

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hagh-Shenas, H. ; Boston Sci. Corp., Natick ; Sunghee Kim ; Interrante, V. ; Healey, C.

In many applications, it is important to understand the individual values of, and relationships between, multiple related scalar variables defined across a common domain. Several approaches have been proposed for representing data in these situations. In this paper we focus on strategies for the visualization of multivariate data that rely on color mixing. In particular, through a series of controlled observer experiments, we seek to establish a fundamental understanding of the information-carrying capacities of two alternative methods for encoding multivariate information using color: color blending and color weaving. We begin with a baseline experiment in which we assess participants' abilities to accurately read numerical data encoded in six different basic color scales defined in the L*a*b* color space. We then assess participants' abilities to read combinations of 2, 3, 4 and 6 different data values represented in a common region of the domain, encoded using either color blending or color weaving. In color blending a single mixed color is formed via linear combination of the individual values in L*a*b* space, and in color weaving the original individual colors are displayed side-by-side in a high frequency texture that fills the region. A third experiment was conducted to clarify some of the trends regarding the color contrast and its effect on the magnitude of the error that was observed in the second experiment. The results indicate that when the component colors are represented side-by-side in a high frequency texture, most participants' abilities to infer the values of individual components are significantly improved, relative to when the colors are blended. Participants' performance was significantly better with color weaving particularly when more than 2 colors were used, and even when the individual colors subtended only 3 minutes of visual angle in the texture. However, the information-carrying capacity of the color weaving approach has its limits. - - We found that participants' abilities to accurately interpret each of the individual components in a high frequency color texture typically falls off as the number of components increases from 4 to 6. We found no significant advantages, in either color blending or color weaving, to using color scales based on component hues thatare more widely separated in the L*a*b* color space. Furthermore, we found some indications that extra difficulties may arise when opponent hues are employed.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:13 ,  Issue: 6 )

Date of Publication:

Nov.-Dec. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.