By Topic

Location Privacy in Sensor Networks Against a Global Eavesdropper

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kiran Mehta ; iSec Laboratory, Dept. of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019. ; Donggang Liu ; Matthew Wright

While many protocols for sensor network security provide confidentiality for the content of messages, contextual information usually remains exposed. Such information can be critical to the mission of the sensor network, such as the location of a target object in a monitoring application, and it is often important to protect this information as well as message content. There have been several recent studies on providing location privacy in sensor networks. However, these existing approaches assume a weak adversary model where the adversary sees only local network traffic. We first argue that a strong adversary model, the global eavesdropper, is often realistic in practice and can defeat existing techniques. We then formalize the location privacy issues under this strong adversary model and show how much communication overhead is needed for achieving a given level of privacy. We also propose two techniques that prevent the leakage of location information: periodic collection and source simulation. Periodic collection provides a high level of location privacy, while source simulation provides trade-offs between privacy, communication cost, and latency. Through analysis and simulation, we demonstrate that the proposed techniques are efficient and effective in protecting location information from the attacker.

Published in:

2007 IEEE International Conference on Network Protocols

Date of Conference:

16-19 Oct. 2007