By Topic

Homomorphisms of Multisource Trees into Networks with Applications to Metabolic Pathways

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qiong Cheng ; Georgia State Univ., Atlanta ; Harrison, R. ; Zelikovsky, A.

Network mapping is a convenient tool for comparing and exploring biological networks; it can be used for predicting unknown pathways, fast and meaningful searching of databases, and potentially establishing evolutionary relations. Unfortunately, existing tools for mapping paths into general networks (PathBlast) or trees into tree networks allowing gaps (MetaPathwayHunter) cannot handle large query pathways or complex networks. In this paper we consider homomorphisms, i.e., mappings allowing to map different enzymes from the query pathway into the same enzyme from the networks. Homomorphisms are more general than homeomorphism (allowing gaps) and easier to handle algorithmically. Our dynamic programming algorithm efficiently finds the minimum cost homomorphism from a multisource tree to directed acyclic graphs as well as general networks. We have performed pairwise mapping of all pathways for four organisms (E. coli, S. cerevisiae, B. subtilis and T. thermophilus species) and found a reasonably large set of statistically significant pathway similarities. Further analysis of our mappings identifies conserved pathways across examined species and indicates potential pathway holes in existing pathway descriptions.

Published in:

Bioinformatics and Bioengineering, 2007. BIBE 2007. Proceedings of the 7th IEEE International Conference on

Date of Conference:

14-17 Oct. 2007