Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

HICCUP: Hierarchical Clustering Based Value Imputation using Heterogeneous Gene Expression Microarray Datasets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

A novel microarray value imputation method, HICCUP1, is presented. HICCUP improves upon existing value imputation methods in the several ways. (1) By judiciously integrating heterogeneous microarray datasets using hierarchical clustering, HICCUP overcomes the limitation of using only single dataset with limited number of samples; (2) Unlike local or global value imputation methods, by mining association rules, HICCUP selects appropriate subsets of the most relevant samples for better value imputation; and (3) by exploiting relationship among the sample space (e.g., cancer vs. non-cancer samples), HICCUP improves the accuracy of value imputation. Experiments with a real prostate cancer microarray dataset verify that HICCUP outperforms existing approaches.

Published in:

Bioinformatics and Bioengineering, 2007. BIBE 2007. Proceedings of the 7th IEEE International Conference on

Date of Conference:

14-17 Oct. 2007