By Topic

Protein function prediction from interaction networks using a random walk ranking algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Freschi, V. ; Univ. of Urbino, Urbino

Predicting protein function at the proteomic-scale is a key task in computational systems biology. High-throughput experimental methods have recently made available many protein interaction networks that need to be analyzed in order to provide insight into the functional role of proteins in the organization of the cell. We propose here a new approach to computational function annotation of protein interaction maps based on a random walk algorithm. Our method exploits the whole topology of the network according to the basic principles of a ranking algorithm for link analysis. We apply the proposed algorithm to analyze the yeast protein interaction network and show that it represents a valid alternative to other annotation techniques based on network analysis by comparing it with the effective majority vote algorithm.

Published in:

Bioinformatics and Bioengineering, 2007. BIBE 2007. Proceedings of the 7th IEEE International Conference on

Date of Conference:

14-17 Oct. 2007