By Topic

Sampling and Sampling Rate Conversion of Band Limited Signals in the Fractional Fourier Transform Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ran Tao ; Beijing Inst. of Technol., Beijing ; Bing Deng ; Wei-Qiang Zhang ; Wang, Yue

The fractional Fourier transform (FRFT) has become a very active area in signal processing community in recent years, with many applications in radar, communication, information security, etc., This study carefully investigates the sampling of a continuous-time band limited signal to obtain its discrete-time version, as well as sampling rate conversion, for the FRFT. Firstly, based on product theorem for the FRFT, the sampling theorems and reconstruction formulas are derived, which explain how to sample a continuous-time signal to obtain its discrete-time version for band limited signals in the fractional Fourier domain. Secondly, the formulas and significance of decimation and interpolation are studied in the fractional Fourier domain. Using the results, the sampling rate conversion theory for the FRFT with a rational fraction as conversion factor is deduced, which illustrates how to sample the discrete-time version without aliasing. The theorems proposed in this study are the generalizations of the conventional versions for the Fourier transform. Finally, the theory introduced in this paper is validated by simulations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 1 )