By Topic

Transition Path Delay Faults: A New Path Delay Fault Model for Small and Large Delay Defects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Irith Pomeranz ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN ; Sudhakar M. Reddy

We propose a new path delay fault model called the transition path delay fault model. This model addresses the following issue. The path delay fault model captures small extra delays, such that each one by itself will not cause the circuit to fail, but their cumulative effect along a path from inputs to outputs can result in faulty behavior. However, non-robust tests for path delay faults may not detect situations where the cumulative effect of small extra delays is sufficient to cause faulty behavior after any number of extra delays are accumulated along a subpath. Under the new path delay fault model, a path delay fault is detected when all the single transition faults along the path are detected by the same test. This ensures that if the accumulation of small extra delays along a subpath is sufficient to cause faulty behavior, the faulty behavior will be detected due to the detection of a transition fault at the end of the subpath. We discuss the new model and present experimental results to demonstrate its viability as an alternative to the standard path delay fault model. We describe an efficient fault simulation procedure for this model. We also describe test generation procedures. An efficient test generation procedure we discuss combines tests for transition faults along the target paths in order to obtain tests that satisfy the requirements of the new model.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:16 ,  Issue: 1 )