By Topic

The Impact of Random Device Variation on SRAM Cell Stability in Sub-90-nm CMOS Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kanak Agarwal ; IBM Corp., Austin ; Sani Nassif

The impact of process variation on SRAM yield has become a serious concern in scaled technologies. In this paper, we propose a methodology to analyze the stability of an SRAM cell in the presence of random fluctuations in the device parameters. First, we develop a theoretical framework for characterizing the dc noise margin of a memory cell. The framework is based on the concept that an SRAM cell is on the verge of instability when the gain across the loop formed by the cross-coupled inverters in the cell is unity. The noise margin criteria developed in this manner can be used to verify a cell stability in the presence of arbitrary DC noise offsets at the two storage nodes in the cell. We also develop metrics for estimating the cell stability during read and write operations and verify these models by extensive Monte Carlo simulations in a 65-nm CMOS process. Our results show that the proposed robustness metrics can be used to estimate cell failure probabilities in an efficient and accurate manner.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:16 ,  Issue: 1 )