By Topic

Stable Photonic Links for Frequency and Time Transfer in the Deep-Space Network and Antenna Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Malcolm Calhoun ; California Inst. of Technol., Pasadena. ; Shouhua Huang ; Robert L. Tjoelker

For more than two decades, NASA deep space network (DSN) frequency and timing metrology has been a driving application for remote transfer of stable radio-frequency signals over fiber-optic cables. Precise, accurate, and stable signals are essential for deep-space communication and tracking, and syntonized and synchronized reference signals from atomic clocks calibrated to coordinated universal time must often be distributed over large distances. Fiber-optic technologies developed at the jet propulsion laboratory have resulted in several operational signal transport capabilities that enable precise spacecraft navigation and sensitive radio science experiments. These techniques are now finding further applicability in metrology applications to remotely compare ultra stable microwave and optical atomic clocks and for antenna array X- and Ka-band signal transport applications where temporal phase stability and alignment are critical. The pioneering DSN photonic link developments and capabilities are summarized, and a stabilized multiphotonic link architecture for ultrastable signal transport in antenna arrays is described.

Published in:

Proceedings of the IEEE  (Volume:95 ,  Issue: 10 )