Cart (Loading....) | Create Account
Close category search window

Electrical and Reliability Characteristics of MOS Devices With Ultrathin SiO2 Grown in Nitric Acid Solutions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kailath, B.J. ; IIT Madras, Chennai ; DasGupta, A. ; DasGupta, N.

In this paper, electrical and reliability properties of ultrathin silicon dioxide, grown by immersing silicon in nitric acid solution have been studied. It is observed that the temperature, oxidation time, and concentration of the nitric acid solution play important roles in determining the thickness as well as the quality of the oxide. Prolonged exposure to nitric acid degrades the quality of the oxide. However, it was found necessary to reduce the oxidation temperature and the concentration of nitric acid to grow oxide of thickness 2 nm. In these conditions, the leakage current and fixed oxide charge in the chemical oxide were found to be too high. However, when this chemical oxidation was followed by anodic oxidation using ac bias, the electrical and reliability characteristics of metal-oxide-semiconductor (MOS) devices showed tremendous improvement. A MOSFETs with gate oxide grown by this technique have demonstrated low subthreshold slope, high transconductance and channel mobility. It is thus proposed that chemical oxidation followed by ac anodization can be a viable alternative low-temperature technique to grow thin oxides for MOS application.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:7 ,  Issue: 4 )

Date of Publication:

Dec. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.