By Topic

A Selective KPCA Algorithm Based on High-Order Statistics for Anomaly Detection in Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanfeng Gu ; Sch. of Electron. & Inf. Tech., Harbin Inst. of Technol., Harbin ; Ying Liu ; Ye Zhang

In this letter, a selective kernel principal component analysis (KPCA) algorithm based on high-order statistics is proposed for anomaly detection in hyperspectral imagery. First, KPCA is performed on the original hyperspectral data to fully mine the high-order correlation between spectral bands. Then, the average local singularity (LS) is defined based on the high-order statistics in the local sliding window, which is used as a measure for selecting the most informative nonlinear component for anomaly detection. By the selective KPCA, information on anomalous targets is extracted to maximum extent, and background clutters are well suppressed in the selected component. Finally, the selected component with maximum average LS is used as input for anomaly detectors. Numerical experiments are conducted on real hyperspectral images collected by the airborne visible/infrared imaging spectrometer. The results strongly prove the effectiveness of the proposed algorithm.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:5 ,  Issue: 1 )