By Topic

On-Line Signature Verification by Dynamic Time Warping and Gaussian Mixture Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miguel-Hurtado, O. ; Univ. Carlos III of Madrid, Madrid ; Mengibar-Pozo, L. ; Lorenz, M.G. ; Liu-Jimenez, J.

Handwriting signature is the most diffuse mean for personal identification. Lots of works have been carried out to get reasonable errors rates within automatic signature verification on-line. Most of the algorithms that have been used for matching work by features extraction. This paper deals with the analysis of discriminative powers of the features that can be extracted from an on-line signature, how it's possible to increase those discriminative powers by dynamic time warping as a step in the preprocessing of the signal coming from the tablet. Also it will be covered the influence of this new step in the performance of the Gaussian mixture models algorithm, which has been shown as a successfully algorithm for on-line automatic signature verification in recent studies. A complete experimental evaluation of the algorithm base on dynamic time warping and Gaussian Mixture Models has been conducted on 2500 genuine signatures samples and 2500 skilled forgery samples from 100 users. Those samples are included at the public access MCyT-Signature-Corpus Database.

Published in:

Security Technology, 2007 41st Annual IEEE International Carnahan Conference on

Date of Conference:

8-11 Oct. 2007