By Topic

Asymptotic Performance of a Censoring Sensor Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tay, Wee Peng ; Massachusetts Inst. of Technol., Cambridge ; Tsitsiklis, J.N. ; Win, M.Z.

We consider the problem of decentralized binary detection in a sensor network where the sensors have access to side information that affects the statistics of their measurements, or reflects the quality of the available channel to a fusion center. Sensors can decide whether or not to make a measurement and transmit a message to the fusion center ("censoring"), and also have a choice of the mapping from measurements to messages. We consider the case of a large number of sensors, and an asymptotic criterion involving error exponents. We study both a Neyman-Pearson and a , Bayesian formulation, characterize the optimal error exponent, and derive asymptotically optimal strategies for the case where sensor decisions are only allowed to depend on locally available information. Furthermore, we show that for the Neyman-Pearson case, global sharing of side information ("sensor cooperation") does not improve asymptotic performance, when the Type I error is constrained to be small.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 11 )