By Topic

Efficient Serial Message-Passing Schedules for LDPC Decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eran Sharon ; Tel-Aviv Univ., Ramat-Aviv ; Simon Litsyn ; Jacob Goldberger

Conventionally, in each low-density parity-check (LDPC) decoding iteration all the variable nodes and subsequently all the check nodes send messages to their neighbors (flooding schedule). An alternative, more efficient, approach is to update the nodes' messages serially (serial schedule). A theoretical analysis of serial message passing decoding schedules is presented. In particular, the evolution of the computation tree under serial scheduling is analyzed. It shows that the tree grows twice as fast in comparison to the flooding schedule's one, indicating that the serial schedule propagates information twice as fast in the code's underlying graph. Furthermore, an asymptotic analysis of the serial schedule's convergence rate is done using the density evolution (DE) algorithm. Applied to various ensembles of LDPC codes, it shows that for long codes the serial schedule is expected to converge in half the number of iterations compared to the standard flooding schedule, when working near the ensemble's threshold. This observation is generally proved for the binary erasure channel (BEC) under some natural assumptions. Finally, an accompanying concentration theorem is proved.

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 11 )