By Topic

Pseudocodewords of Tanner Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kelley, C.A. ; Ohio State Univ., Columbus ; Sridhara, D.

This paper presents a detailed analysis of pseudocodewords of Tanner graphs. Pseudocodewords arising on the iterative decoder's computation tree are distinguished from pseudocodewords arising on finite degree lifts. Lower bounds on the minimum pseudocodeword weight are presented for the BEC, BSC, and AWGN channel. Some structural properties of pseudocodewords are examined, and pseudocodewords and graph properties that are potentially problematic with min-sum iterative decoding are identified. An upper bound on the minimum degree lift needed to realize a particular irreducible lift-realizable pseudocodeword is given in terms of its maximal component, and it is shown that all irreducible lift-realizable pseudocodewords have components upper bounded by a finite value t that is dependent on the graph structure. Examples and different Tanner graph representations of individual codes are examined and the resulting pseudocodeword distributions and iterative decoding performances are analyzed. The results obtained provide some insights in relating the structure of the Tanner graph to the pseudocodeword distribution and suggest ways of designing Tanner graphs with good minimum pseudocodeword weight.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 11 )