By Topic

Spectral Factorization for Polynomial Spectral Densities—Impact of Dimension

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boche, H. ; Tech. Univ. Berlin, Berlin ; Pohl, V.

This correspondence investigates the continuity behavior of the spectral factorization mapping for trigonometric polynomials. It is clear that this factorization mapping is continuous on the space of all trigonometric polynomials of a fixed degree N which means that a small perturbation in the given spectrum yields always a bounded error in the spectral factor. The correspondence derives a lower bound on the continuity constant of the spectral factorization mapping which shows that the error in the spectral factor grows at least proportional with the logarithm of the degree N of the given spectrum.

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 11 )