Cart (Loading....) | Create Account
Close category search window
 

Hyperspectral Image Classification by Bootstrap AdaBoost With Random Decision Stumps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kawaguchi, S. ; Kyushu Univ., Fukuoka ; Nishii, R.

We consider a supervised classification of hyperspectral data using AdaBoost with stump functions as base classifiers. We used the bootstrap method without replacement to improve stability and accuracy and to reduce overtraining. We randomly split a data set into two subsets: one for training and the other one for validation. Subsampling and training/validation steps were repeated to derive the final classifier by the majority vote of the classifiers. This method enabled us to estimate variable relevance to the classification. The relevance measure was used to estimate prior probabilities of the variables for random combinations. In numerical experiments with multispectral and hyperspectral data, the proposed method performed extremely well and showed itself to be superior to support vector machines, artificial neural networks, and other well-known classification methods.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.