Cart (Loading....) | Create Account
Close category search window

Sequence Specific Label-Free DNA Sensing Using Film-Bulk-Acoustic-Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hao Zhang ; Southern California Univ., Los Angeles ; Marma, Mong S. ; Bahl, S.K. ; Eun Sok Kim
more authors

A label-free biosensor (for detection of DNA sequences) based on film-bulk-acoustic-resonator (FBAR) is presented in this letter. The FBAR's resonant frequency shifts to a lower value when a complementary single-strand DNA sequence is hybridized with a DNA probe sequence on an Au-coated FBAR surface. The sensor is capable of distinguishing a complementary DNA that is mismatched to a probe DNA by a single nucleotide. The label-free, highly sensitive and selective, and real-time detection of DNA sequence could easily be made into an array for combinatory DNA sequencing, and could possibly help geneticists to detect specific DNA sequences accurately and fast, without any expensive optical scanning or imaging.

Published in:

Sensors Journal, IEEE  (Volume:7 ,  Issue: 12 )

Date of Publication:

Dec. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.