By Topic

High-efficiency 0.25- mu m gate-length pseudomorphic power heterostructure FETs at millimeter-wave frequencies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Lester, L.F. ; General Electric Co., Syracuse, NY, USA ; Kao, M.-Y. ; Ho, P. ; Ferguson, D.W.
more authors

Summary form only given. The authors compare the 35-GHz power performance of four different 0.25- mu m gate-length pseudomorphic AlGaAs/InGaAs/GaAs heterostructure FET (HFET) devices. The devices that are examined include the HEMT (high-electron-mobility transistor), double-heterojunction HEMT (DHHEMT), doped-channel HFET (DCHFET), and the doped-channel MODFET (DCHMODFET). A maximum 35-GHz power-added-efficiency and a power density of 49% and 0.94 W/mm were measured, for the DCHMODFET; 43% and 0.97 W/mm for the DHHEMT, 32% and 0.75 W/mm for the HEMT, and 31% and 0.77 W/mm for the DCHFET. The DC parameters that influence RF power performance were analyzed, and it was found that the I-V linearities of the DCHMODFET, DCHFET, and DHHEMT are much better than that of the HEMT and that the pinchoff characteristics of the DCHMODFET are superior to those of the DHHEMT. The first point explains why the efficiencies of the DCHMODFET and DHHEMT are significantly better than that of the HEMT. It is believed that the second point is responsible for the better efficiency in the DCHMODFET compared to the DHHEMT.

Published in:

Electron Devices, IEEE Transactions on  (Volume:36 ,  Issue: 11 )