Cart (Loading....) | Create Account
Close category search window

Use of tilted-superlattices for quantum-well-wire lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsuchiya, M. ; California Univ., Santa Barbara, CA, USA ; Petroff, P.M. ; Coldren, L.A.

Summary form only given. Lasers with quantum-well-wire (QWW) active regions have been demonstrated using tilted-superlattice (TSL) structures with lateral dimensions in the low nanometer range. They are formed directly by molecular-beam epitaxy (MBE) without sophisticated lithography technologies. Separate-confinement-heterostructure lasers having TSL-QWWs as active regions were fabricated. The TSL-QWWs consist of a 5-nm GaAs layer and a 5-nm (AlGaAs(x=0.25)-GaAs) TSL layer which are sandwiched by AlGaAs(x=0.25) waveguide and AlGaAs (x=0.5) cladding layers. Threshold current densities as low as 460 A/cm2 and differential quantum efficiencies of 29% per facet were obtained in a laser thus fabricated with a long cavity (1120 mu m) at room temperature. The lasing wavelength was 827 nm, which corresponds to the QWW state energy.

Published in:

Electron Devices, IEEE Transactions on  (Volume:36 ,  Issue: 11 )

Date of Publication:

Nov 1989

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.