By Topic

Perceptual Surface Roughness Classification of 3D Textures Using Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McDaniel, T.L. ; Arizona State Univ., Tempe ; Panchanathan, S.

Perceptual surface roughness classification describes how a surface's texture feels haptically in terms of perceptual categories such as smooth, rough, bumpy, etc. Computer vision and pattern recognition algorithms which estimate a surface's perceptual roughness have a wide range of application areas including robotics, assistive devices, telesurgery and teleperception. In this paper, we propose a novel approach to perceptual surface roughness classification that, unlike previous approaches, is designed to handle multiple roughness categories within the same image. The steps of our approach include (1) texton extraction and classification using a multi-class, non-linear Support Vector Machine; (2) segmentation using the Iterated Conditional Modes algorithm; and (3) overall perceptual roughness classification using a Nearest Neighbor classifier. The proposed approach is evaluated using visio-haptic subjective measures of roughness on images of the 3D texture of real world objects.

Published in:

Haptic, Audio and Visual Environments and Games, 2007. HAVE 2007. IEEE International Workshop on

Date of Conference:

12-14 Oct. 2007