By Topic

Small-Signal Discrete-Time Modeling of Digitally Controlled PWM Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dragan Maksimovic ; Univ. of Colorado, Boulder ; Regan Zane

The letter presents an exact small-signal discrete-time model for digitally controlled pulsewidth modulated (PWM) dc-dc converters operating in constant frequency continuous conduction mode (CCM) with a single effective A/D sampling instant per switching period. The model, which is based on well-known approaches to discrete-time modeling and the standard Z-transform, takes into account sampling, modulator effects and delays in the control loop, and is well suited for direct digital design of digital compensators. The letter presents general results valid for any CCM converter with leading or trailing edge PWM. Specific examples, including approximate closed-form expressions for control-to-output transfer functions are given for buck and boost converters. The model is verified in simulation using an independent system identification approach.

Published in:

IEEE Transactions on Power Electronics  (Volume:22 ,  Issue: 6 )