Cart (Loading....) | Create Account
Close category search window
 

FPGA-Based Speed Control IC for PMSM Drive With Adaptive Fuzzy Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ying-Shieh Kung ; Southern Taiwan Univ., Tainan ; Ming-Hung Tsai

The new generation of field programmable gate array (FPGA) technologies enables an embedded processor intellectual property (IP) and an application IP to be integrated into a system-on-a-programmable-chip (SoPC) developing environment. Therefore, this study presents a speed control integrated circuit (IC) for permanent magnet synchronous motor (PMSM) drive under this SoPC environment. First, the mathematic model of PMSM is defined and the vector control used in the current loop of PMSM drive is explained. Then, an adaptive fuzzy controller adopted to cope with the dynamic uncertainty and external load effect in the speed loop of PMSM drive is proposed. After that, an FPGA-based speed control IC is designed to realize the controllers. The proposed speed control IC has two IPs, a Nios II embedded processor IP and an application IP. The Nios II processor is used to develop the adaptive fuzzy controller in software due to the complicated control algorithm and low sampling frequency control (speed control: 2 kHz). The designed application IP is utilized to implement the current vector controller in hardware owing to the requirement for high sampling frequency control (current loop: 16 kHz, pulsewidth modulation circuit: 4-8 MHz) but simple computation. Finally, an experimental system is set up and some experimental results are demonstrated.

Published in:

Power Electronics, IEEE Transactions on  (Volume:22 ,  Issue: 6 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.