By Topic

Selection of Best Projection from 3D Star Coordinate Projection Space using Energy Minimization and Topology Preserving Mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jahangheer Shaik ; CVPIA Lab, Electrical and Computer Engineering, University of Memphis. ; Mohammed Yeasin

This paper presents two algorithms for autonomously selecting the best projection among all possible configurations when projecting a high-dimensional (HD) data set on to a 3-dimensional (3D) space using 3D star coordinate projection (3D SCP). The proposed automated algorithms use two different objective functions that minimize the stress and preserve the pair wise distance among data points before and after the projection. The objective functions follow the principle of preserving topology similar to the multidimensional scaling (MDS). The concept of topology preserving mapping is found to be effective in autonomously selecting the best projection using the 3D SCP for visualization. Empirical analyses on artificial and real datasets are performed to show the utility of the proposed methods and their performances were also compared against linear and nonlinear projection-based visualization algorithms.

Published in:

2007 International Joint Conference on Neural Networks

Date of Conference:

12-17 Aug. 2007