Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Ensemble Based Data Fusion from Parietal Region Event Related Potentials for Early Diagnosis of Alzheimer's Disease

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

As a natural consequence of steady increase of average population age in developed countries, Alzheimer's disease is becoming an increasingly important public health concern. The financial and emotional toll of the disease is exacerbated with lack of standard diagnostic procedures available at the community clinics and hospitals, where most patients are evaluated. In our recent preliminary results, we have reported that the event related potentials (ERPs) of the electroencephalogram can be used to train an ensemble-based classifier for automated diagnosis of Alzheimer's disease. In this study, we present an updated alternative approach by combining complementary information provided by ERPs obtained from several parietal region electrodes. The results indicate that ERPs obtained from parietal region of the cortex carry substantial complementary diagnostic information. Specifically, the diagnostic ability of such an approach is substantially better, compared to the performance obtained by using data from any of the individual electrodes alone. Furthermore, the diagnostic performance of the proposed approach compares very favorably to that obtained at community clinics and hospitals.

Published in:

Neural Networks, 2007. IJCNN 2007. International Joint Conference on

Date of Conference:

12-17 Aug. 2007