By Topic

A Cell Assembly Model of Sequential Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghalib, H. ; Middlesex Univ., London ; Huyck, C.

Perception, prediction and generation of sequences is a fundamental aspect of human behavior and depends on the ability to detect serial order. This paper presents a plausible model of sequential memory at the neurological level based on the theory of cell assemblies. The basic idea is that sequences in the brain are represented by cell assemblies. Each item of the sequence and the sequential association between the items are represented by cell assemblies. Simulation results show that the model is capable of recognizing and discriminating multiple sequences stored in memory. The cell assemblies that represent the sequential association between two items are activated if these items occur in the input in the correct order. These sequence detecting cell assemblies form the basis of this model. A simulation presenting 100 stored sequences and 100 not stored recognizes perfectly 90% of the time with no false positives.

Published in:

Neural Networks, 2007. IJCNN 2007. International Joint Conference on

Date of Conference:

12-17 Aug. 2007