By Topic

An Improvement of One-Against-One Method for Multi-Class Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yang Liu ; Nat. Univ. of Defense Technol., Changsha ; Rui Wang ; Ying-Sheng Zeng

The support vector machine (SVM) has an excellent ability to solve binary classification problems. How to process multi-class problems with SVM is one of the present focuses. Among the existing multi-class SVM methods include one-against-one method, one-against-all method and some others. This paper presents an improved technique of one-against-one method that can largely reduce the number of the hyper-planes and speed up the predicting process. The experimental results show that the proposed method not only has promising accuracy and less training time, but also significantly improves the predicting speed in comparison with traditional one-against-one and one-against-all method.

Published in:

Machine Learning and Cybernetics, 2007 International Conference on  (Volume:5 )

Date of Conference:

19-22 Aug. 2007