Cart (Loading....) | Create Account
Close category search window
 

Simulation of Intelligent Computational Models in Biological Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The human brain can perform a range of complicated computations and logical reasoning using neural networks with a huge number of neurons. Since Hodgkin and Huxley proposed a set of equations to describe the electrophysiological properties of spiking neurons, various network structures of neurons have been developed through neuroscience research that can now be simulated by electronic circuits or computer programs. In this paper, an adaptive learning mechanism is simulated based on the biological property related to the spike time dependent plasticity of synapses. A demonstration shows that such spiking neurons are able to develop their specific receptive field for recognition of patterns. This mechanism can be used to explain some adaptive behaviours in biological systems. It is can also be applied to artificial intelligent systems.

Published in:

Machine Learning and Cybernetics, 2007 International Conference on  (Volume:4 )

Date of Conference:

19-22 Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.