Cart (Loading....) | Create Account
Close category search window
 

Solving Multi-Objective Optimization Problems by a Bi-Objective Evolutionary Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yu-Ping Wang ; Xidian Univ., Xi''an

In this paper a novel model for multiobjective optimization problem is proposed first, in which the multiobjective optimization problem is transformed into a bi-objective optimization problem. In this bi-objective problem one objective is responsible for optimizing the quality of the solutions, and the other is to improve the distribution of the obtained nondominated solution set. Then a new crossover operator and selection scheme are designed. Based on these, a specific-designed evolutionary algorithm is presented. The simulations on five widely used benchmark problems are made and the results indicate that the proposed algorithm is efficient and outperforms the compared algorithms.

Published in:

Machine Learning and Cybernetics, 2007 International Conference on  (Volume:2 )

Date of Conference:

19-22 Aug. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.