Cart (Loading....) | Create Account
Close category search window

Model Context Selection for Run-to-Run Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In the design of run-to-run controllers one is usually faced with the problem of selecting a model structure that best explains the variability in the data. The variable selection problem often becomes more complex when there are large numbers of candidate variables and the usual regression modeling assumptions are not satisfied. This paper proposes a model selection approach that uses ideas from the statistical linear models and stepwise regression literature to identify the context variables that contribute most to the autocorrelation and to the offsets in the data. A simulation example and an application to lithography alignment control are presented to illustrate the approach.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

Nov. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.