By Topic

Broad tuning ultra low phase noise dielectric resonator oscillators using SiGe amplifier and ceramic-based resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhou, L. ; Sch. of Electron. Inf. & Electr. Eng., Shanghai Jiao Tong Univ., Shanghai ; Wu, Z. ; Sallin, M. ; Everard, J.

This paper describes the design of very low noise, tunable, X-band dielectric resonator oscillators (DROs) demonstrating phase-noise performance of -135 dBc/Hz at 10 kHz offset. SiGe transistors are used for the oscillator sustaining amplifiers that offer a circulating power of 12 dBm and a gain of 5.4 dB per stage as well as a low flicker noise corner of 40 kHz. A variety of resonator configurations utilising BaTiO3 resonators are presented demonstrating unloaded Qs from 10 000 to 22 000. These resonators are optimised and coupled to the amplifiers for minimum phase noise where QL/Q0 = 1/2, and hence S21 = -6 dB. To incorporate tuning with low additional phase noise, a phase shifter is also investigated. The theory for the low noise oscillator design is included; experimental results demonstrate close correlation with the theory.

Published in:

Microwaves, Antennas & Propagation, IET  (Volume:1 ,  Issue: 5 )