Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

High-Performance In0.5Ga0.5 As/GaAs Quantum-Dot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Yang ; Michigan Univ., Ann Arbor ; Bhattacharya, Pallab ; Mi, Z.

Compound-semiconductor-based lasers grown directly on silicon substrates would constitute an important technology for the realization of on-chip optical interconnects. The characteristics of GaAs-or InP-based devices on silicon can be degraded by the large density of propagating dislocations resulting from the large lattice mismatch (> 4%). The use of multiple layers of self-organized In(Ga, Al)As/GaAs quantum dots (QDs) as a 3D dislocation filter to impede the propagation of dislocations and to reduce dislocation density in GaAs/Si lattice-mismatched heterostructures has been investigated. The effectiveness of this technique, depending on QD composition, size, areal density, and number of dot layers, is analyzed by a quasi-3D model of strain-dislocation interaction. It is found that ten layers of InAs QDs of size ~20-30 nm constitute the most effective dislocation filter. This is experimentally verified by cross-sectional transmission electron microscopy, photoluminescence, and performance characteristics of In0.5Ga0.5As/GaAs QD separate confinement heterostructure lasers on Si. The lasers exhibit Jth~900 A/cm2 at 273 K, the large characteristic temperature (T0=278 K) is in the temperature range of 5degC-85degC, and the output slope efficiency (~0.4 W/A) is independent of temperature in the range of 5degC-50degC.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 11 )