By Topic

Work Function Tunability of Refractory Metal Nitrides by Lanthanum or Aluminum Doping for Advanced CMOS Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Xin Peng Wang ; Nat. Univ. of Singapore, Singapore ; Andy Eu-Jin Lim ; Hong Yu Yu ; Ming-Fu Li
more authors

A lanthanum (La)-doped HfN is investigated as an n-type metal gate electrode on SiO2 with tunable work function. The variation of La concentration in (HfinfinLa1-x)Ny modulates the gate work function from 4.6 to 3.9 eV and remains stable after high-temperature annealing (900degC to 1000degC), which makes it suitable for n-channel MOSFET application. An ultrathin high-fc dielectric layer was formed at the metal/SiO2 interface due to the (HfinfinLa1-x)Ny and SiO2 interaction during annealing. This causes a slight reduction in the effective oxide thickness and improves the tunneling current of the gate dielectric by two to three orders. We also report the tunability of TaN with Al doping, which is suitable for a p-type metal gate work function. Based on our results, several dual-gate integration processes by incorporating lanthanum or aluminum into a refractory metal nitride for CMOS technology are proposed.

Published in:

IEEE Transactions on Electron Devices  (Volume:54 ,  Issue: 11 )