By Topic

A Low-Power Robust Humidity Sensor in a Standard CMOS Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Okcan, Burak ; Middle East Tech. Univ., Ankara ; Akin, T.

This paper presents a low-cost thermal-conductivity-based humidity sensor implemented using a 0.6-mum CMOS process, where suspended p-n junction diodes are used as the humidity-sensitive elements. The measurement method uses the difference between the thermal conductivities of air and water vapor at high temperatures by comparing the output voltages of two heated and thermally isolated diodes; one of which is exposed to the environment and has a humidity-dependent thermal conductance, while the other is sealed and has a fixed thermal conductance. Thermal isolation is obtained by a simple front-end bulk silicon etching process in a TMAH solution, while the diodes are protected by the electrochemical etch-stop technique. The suspended diodes are connected to an on-chip circuit using polysilicon interconnect layers in order to increase their thermal resistance to be able to heat them with less power. Due to the high electrical resistance and positive temperature coefficient of resistance of the polysilicon, temperature sensitivities of the diodes are reduced to -1.3 mV/K at a 100-muA bias level. The diodes and the readout circuit are monolithically integrated using a standard 0.6-mum CMOS process. Characterization results show that humidity sensitivity of the sensor is 14.3, 26, and 46.9 mV/%RH for 20degC, 30degC, and 40degC, respectively, with a nonlinearity less than 0.3%. Hysteresis of the sensor is less than 1%. The chip measures 1.65 mm times 1.90 mm, operates from a 5-V supply, and dissipates only 1.38-mW power.

Published in:

Electron Devices, IEEE Transactions on  (Volume:54 ,  Issue: 11 )