By Topic

Demonstration of Low Vt Ni-FUSI N-MOSFETs With SiON Dielectrics by Using a Dy2O3 Cap Layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Yu, H.Y. ; Interuniv. Microelectron. Center, Leuven ; S.Z.Chang ; Veloso, A. ; Lauwers, A.
more authors

This letter reports a novel approach to achieve low threshold voltage (Vt) Ni-fully-silicide (FUSI) nMOSFETs with SiON dielectrics. By using a dysprosium-oxide (Dy2O3) cap layer with a thickness of 5 Aring on top of the SiON host dielectrics, Vt,lin of 0.18 V for long-channel devices (Lg = 1 mum) using NiSi-FUSI electrode is obtained, satisfying the high-performance device requirements. The Vt modulation due to the Dy2O3 cap layer is also maintained in the short-channel devices (with an Lg,min of 90 nm as demonstrated in this letter). In particular, approximately 150times reduction in gate leakage current is seen while preserving the dielectric capacitance equivalent thickness after adding the Dy2O3 cap layer on SiON dielectrics, likely due to a high-k layer (DySiON) formation during device source/drain activation process. We also report that the Dy2O3 layer does not vitally degrade the device reliability, such as positive-bias temperature instability and time-dependant dielectrics breakdown.

Published in:

Electron Device Letters, IEEE  (Volume:28 ,  Issue: 11 )