By Topic

N-Channel (110)-Sidewall Strained FinFETs With Silicon–Carbon Source and Drain Stressors and Tensile Capping Layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

The performance of n-channel (110)-sidewall trigate fin-shaped field-effect transistors (FinFETs) is seriously compromised as (110) surfaces have significantly lower electron mobility than (100) surfaces. Straining the channel in (110)-sidewall FinFETs using lattice-mismatched silicon-carbon (Si1-yCy) stressors alone was experimentally determined to be far less effective than doing the same with (100)-sidewall FinFETs. By additionally incorporating a tensile silicon nitride contact etch-stop layer, the increase in longitudinal tensile stress and the introduction of vertical compressive stress result in significant further IDsat enhancement, highlighting the importance of the vertical compressive stress component for enhancing (110)-sidewall FinFET performance.

Published in:

IEEE Electron Device Letters  (Volume:28 ,  Issue: 11 )