By Topic

Impact of Channel Plan and Dispersion Map on Hybrid DWDM Transmission of 42.7-Gb/s DQPSK and 10.7-Gb/s OOK on 50-GHz Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandrasekhar, S. ; Bell Labs., Holmdel ; Liu, X.

We investigate experimentally the performance of 42.7-Gb/s return-to-zero (RZ) differential quadrature phase-shift-keyed (DQPSK) channels in a dense wavelength-division-multiplexed transmission system having 10.7-Gb/s nonreturn-to-zero (NRZ) on-off keyed (OOK) channels. Cross-phase modulation (XPM) from the OOK channels is found to be a dominating nonlinear penalty source for copropagating DQPSK channels in a dispersion-managed transmission link with multiple standard single-mode fiber spans. It is also found that the XPM penalty strongly depends on channel occupancy and residual dispersion per span (RDPS). Large RDPS effectively mitigates XPM even for the worst-case occupancy where a 42.7-Gb/s RZ-DQPSK channel is amidst several 10.7-Gb/s NRZ-OOK channels on a 50-GHz channel grid.

Published in:

Photonics Technology Letters, IEEE  (Volume:19 ,  Issue: 22 )