By Topic

Accurate Quantification of Gene Expression using Fuzzy Clustering Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu-Ping Wang ; Univ. of Missouri-Kansas City, Kansas City ; Gunampally, M. ; Jie Chen ; Bittel, D.
more authors

Despite the widespread application of microarray imaging for biomedical research, barriers still exist regarding its reliability and reproducibility for clinical use. A critical problem lies in accurate spot segmentation and quantification of gene expression level (mRNA) from microarray images. A variety of commercial and research freeware packages are available, but most cannot handle array spots with complex shapes such as donuts and scratches. Clustering approaches such as k-means and mixture models were introduced to overcome this difficulty, which used the hard labeling of each pixel. In this paper, we introduce a more sophisticated fuzzy clustering based method. We show that possiblistic c-means clustering performed the best among several fuzzy clustering approaches. In addition, we compared three statistical criteria in measuring gene expression levels and show that a new unbiased statistic is able to quantify the gene expression level more accurately. The proposed algorithms have been tested on a variety of simulated and real microarray images, demonstrating their better performance.

Published in:

Genomic Signal Processing and Statistics, 2007. GENSIPS 2007. IEEE International Workshop on

Date of Conference:

10-12 June 2007