By Topic

Robustness of Intervention Strategies for Probabilistic Boolean Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pal, R. ; Texas A&M Univ., College Station ; Datta, A. ; Dougherty, E.R.

Probabilistic Boolean networks (PBNs) have been recently introduced as a paradigm for modeling genetic regulatory networks. One of the objectives of PBN modeling is to use the network for the design and analysis of intervention strategies aimed at moving the network out of undesirable states, such as those associated with disease, and into desirable ones. The intervention strategies proposed in the context of Probabilistic Boolean networks assume perfect knowledge of the transition probability matrix of the PBN. This assumption cannot be satisfied in practice due to estimation errors or mismatch between the PBN model and the actual genetic regulatory network. Thus it is important to study the effect of modeling errors on the final outcome of an intervention strategy and the goal of this paper is to do precisely that when the uncertainties are in the entries of the transition probability matrix.

Published in:

Genomic Signal Processing and Statistics, 2007. GENSIPS 2007. IEEE International Workshop on

Date of Conference:

10-12 June 2007