By Topic

Modeling the Kinetics of Hybridization in Microarrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Vikalo ; Department of Electrical Engineering, California Institute of Technology, Pasadena, CA ; B. Hassibi ; M. Stojnic ; A. Hassibi

Conventional fluorescent-based microarrays acquire data after the hybridization phase. In this phase the targets analytes (i.e., DNA fragments) bind to the capturing probes on the array and supposedly reach a steady state. Accordingly, microarray experiments essentially provide only a single, steady-state data point of the hybridization process. On the other hand, a novel technique (i.e., realtime microarrays) capable of recording the kinetics of hybridization in fluorescent-based microarrays has recently been proposed in [5]. The richness of the information obtained therein promises higher signal-to-noise ratio, smaller estimation error, and broader assay detection dynamic range compared to the conventional microarrays. In the current paper, we develop a probabilistic model of the kinetics of hybridization and describe a procedure for the estimation of its parameters which include the binding rate and target concentration. This probabilistic model is an important step towards developing optimal detection algorithms for the microarrays which measure the kinetics of hybridization, and to understanding their fundamental limitations.

Published in:

2007 IEEE International Workshop on Genomic Signal Processing and Statistics

Date of Conference:

10-12 June 2007