By Topic

High-Speed Quantum-Dot Vertical-Cavity Surface-Emitting Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nikolai N. Ledentsov ; Technische Univ. Berlin, Berlin ; Friedhelm Hopfer ; Dieter Bimberg

We report on recent progress in high-speed quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs). Advanced types of QD media allow an ultrahigh modal gain, avoid temperature depletion, and gain saturation effects. Temperature robustness up to 100degC for 0.96-1.25 mum range devices is realized in the continuous wave (cw) regime. An open eye 20 Gb/s operation with bit error rates better than 10-12 has been achieved in a temperature range 25degC - 85degC without current adjustment. A different approach for ultrahigh-speed operation is based on a combination of the VCSEL section, operating in the CW mode with an additional section of the device, which is electrooptically modulated under a reverse bias. The tuning of a resonance wavelength of the second section, caused by the electrooptic effect, affects the transmission of the system. The approach enables ultrahigh-speed signal modulation. 60 GHz electrical and ~35 GHz optical (limited by the photodetector response) bandwidths are realized.

Published in:

Proceedings of the IEEE  (Volume:95 ,  Issue: 9 )