By Topic

InP/GaInP Quantum Dots as Single-Photon Sources for Quantum Information Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Thomas Aichele ; CEA/Univ. J. Fourier, Grenoble ; Matthias Scholz ; Oliver Benson

Many important realizations and proposals for applications in quantum information processing require single photons as carriers of quantum information. Here, we review different demonstrations of quantum applications using a deterministic single-photon source based on InP/GaInP quantum dots. First, the single-photon generation is described and verified by autocorrelation measurements. A modification of the correlation setup allows the simultaneous observation of wave and particle properties of the photons. Additional to single-photon emission, photon pairs and triplets from multiexciton cascades were observed, as well. Using a Michelson interferometer an efficient separation of photon pairs can be achieved allowing multiplexing on a single-photon level. The applicability was demonstrated in a quantum key distribution experiment. As another application, different degrees of freedom of a single photon were used to realize a two-qubit Deutsch-Jozsa algorithm. Encoding the quantum information in appropriate bases, an operation of the setup resistant to phase fluctuation was demonstrated.

Published in:

Proceedings of the IEEE  (Volume:95 ,  Issue: 9 )