By Topic

Self-Organizing Neural Architectures and Cooperative Learning in a Multiagent Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dan Xiao ; Nanyang Technol. Univ., Singapore ; Ah-Hwee Tan

Temporal-difference-fusion architecture for learning, cognition, and navigation (TD-FALCON) is a generalization of adaptive resonance theory (a class of self-organizing neural networks) that incorporates TD methods for real-time reinforcement learning. In this paper, we investigate how a team of TD-FALCON networks may cooperate to learn and function in a dynamic multiagent environment based on minefield navigation and a predator/prey pursuit tasks. Experiments on the navigation task demonstrate that TD-FALCON agent teams are able to adapt and function well in a multiagent environment without an explicit mechanism of collaboration. In comparison, traditional Q-learning agents using gradient-descent-based feedforward neural networks, trained with the standard backpropagation and the resilient-propagation (RPROP) algorithms, produce a significantly poorer level of performance. For the predator/prey pursuit task, we experiment with various cooperative strategies and find that a combination of a high-level compressed state representation and a hybrid reward function produces the best results. Using the same cooperative strategy, the TD-FALCON team also outperforms the RPROP-based reinforcement learners in terms of both task completion rate and learning efficiency.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 6 )