By Topic

On the Effects of Memory Latency and Bandwidth on Supercomputer Application Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Murphy, R. ; Sandia Nat. Lab., Albuquerque

Since the first vector supercomputers in the mid-1970's, the largest scale applications have traditionally been floating point oriented numerical codes, which can be broadly characterized as the simulation of physics on a computer. Supercomputer architectures have evolved to meet the needs of those applications. Specifically, the computational work of the application tends to be floating point oriented, and the decomposition of the problem two or three dimensional. Today, an emerging class of critical applications may change those assumptions: they are combinatorial in nature, integer oriented, and irregular. The performance of both classes of applications is dominated by the performance of the memory system. This paper compares the memory performance sensitivity of both traditional and emerging HPC applications, and shows that the new codes are significantly more sensitive to memory latency and bandwidth than their traditional counterparts. Additionally, these codes exhibit lower base-line performance, which only exacerbates the problem. As a result, the construction of future supercomputer architectures to support these applications will most likely be different from those used to support traditional codes. Quantitatively understanding the difference between the two workloads will form the basis for future design choices.

Published in:

Workload Characterization, 2007. IISWC 2007. IEEE 10th International Symposium on

Date of Conference:

27-29 Sept. 2007