Cart (Loading....) | Create Account
Close category search window
 

480-GMACS/mW Resonant Adiabatic Mixed-Signal Processor Array for Charge-Based Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Karakiewicz, R. ; Snowbush Microelectron., Toronto ; Genov, R. ; Cauwenberghs, G.

A resonant adiabatic mixed-signal VLSI array delivers 480 GMACS (109 multiply-and-accumulates per second) throughput for every mW of power, a 25-fold improvement over the energy efficiency obtained when resonant clock generator and line drivers are replaced with static CMOS drivers. Losses in resonant clock generation are minimized by activating switches between the LC tank and DC supply with a periodic pulse signal, and by minimizing the variability of the capacitive load to maintain resonance. We show that minimum energy is attained for relatively wide pulse width, and that typical load distribution in template-based charge-mode computation implies almost constant capacitive load. The resonantly driven 256 times 512 array of 3-T charge-conserving multiply-accumulate cells is embedded in a template matching processor for image classification and validated in a face detection task.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 11 )

Date of Publication:

Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.