By Topic

Fast Nonlinear Image Reconstruction for Scanning Impedance Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Scanning (electrical) impedance imaging (SII) is a novel high-resolution imaging modality that has the potential of imaging the electrical properties of thin biological tissues. In this paper, we apply the reciprocity principle to the modeling of the SII system and develop a fast nonlinear inverse method for image reconstruction. The method is fast because it uses convolution to eliminate the requirement of a numerical solver for the 3-D electrostatic field in the SII system. Numerical results show that our approach can accurately reveal the exact conductivity distribution from the measured current map for different 2-D simulation phantoms. Experiments were also performed using our SII system for a piece of butterfly wing and breast cancer cells. Two-dimensional current images were measured and corresponding quantitative conductivity images were restored using our approach. The reconstructed images are quantitative and reveal details not present in the measured images.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:55 ,  Issue: 3 )